Type | Journal Article - Remote Sensing--Applications. InTech |
Title | Object-based image analysis of VHR satellite imagery for population estimation in informal settlement Kibera-Nairobi, Kenya |
Author(s) | |
Publication (Day/Month/Year) | 2012 |
Page numbers | 407-436 |
URL | https://www.researchgate.net/profile/Kristof_Ostir/publication/259843887_Object-based_image_analysis_of_VHR_satellite_imagery_for_population_estimation_in_informal_settlement_Kibera-Nairobi_Kenya/links/00b4952e1aaa7b64a5000000.pdf |
Abstract | Cities in Africa and developing countries in general are having a difficult time coping with the influx of people arriving every day. Informal settlements are growing, and governments are struggling to provide even the most fundamental services to their urban populations. Kibera (edge region within the Nairobi) is the biggest informal settlement in Kenya, and one of the biggest in Africa. The population estimates vary between 170,000 and 1 million and are highly debatable. What is certain is that the area is large (roughly 2.5 km2), host at least hundreds of thousands people, is informal and self-organized, stricken by poverty, disease, population increase, environmental degradation, corruption, lack of security and - often overlooked but extremely important – lack of information which all contribute to lack of basic services such as access to safe water, sanitation, health care and formal education. In Africa, but also in other continents, urban growth has reached alarming figures. Informal settlements formation has been associated with the rapid growth of urban population caused by rural immigration, triggered by difficult livelihood, civil wars and internal disturbances. The result of this very rapid and unplanned urban growth is that 30% to 60% of residents of most large cities in developing countries live in informal settlements (UNHSP, 2005). Nowadays, informal residential environments (slums) are an important component reflecting fast urban expansion in poor living conditions. Densely populated urban areas in developing countries often lack any kind of data that would enable the monitoring systems. Monitoring systems joining spatial (location) and social data can be used for the monitoring, planning and management purposes. New methods of monitoring are required to generate adequate data to help link the location and socioeconomic data in urban systems to local policies and controlling actions. In the past, rapid urban growth was quite difficult to manage and regulate when processes were in progress. Available census data barely accounts for the reality, as in most cases, they www.intechopen.com 408 Remote Sensing – Applications are based on figures extrapolated from old census, carried out in the 1970s or, if recent, they are obtained with poor accuracy, as informal settlements are difficult to survey (Sartori et al., 2002). More can now be done at least to monitor the extent and consequences of rapid urban growth. Where accurate maps of informal settlements and relevant census data completely lack, answers can be found using independent survey, derived from satellite or aerial technologies. Usage of satellite imagery nowadays enables rather quick answers to questions such as: where informal settlements are, what was the dynamics of their growth, how many people potentially live there, what basic services inhabitants need. Among the main issues to be addressed in informal settlements are the needs for potable water, waste evacuation, energy, education and health care facilities, and crime control. It is believed these actions can be planned based on quality mapping of the phenomena. The spatial resolution of space-borne remote sensing has improved to such extent that their products are comparable with the ones provided by aerial photography. Satellite images taken with very high resolution (VHR) sensors, i.e. resolution around and below 1 m, enable skilled user to identify and extract buildings, trees, narrow paths and other objects of comparable size. A side effect of higher resolution is larger quantity of data which require more storage capacities and processing costs. Detection of informal residential settlements from satellite imagery is especially challenging task due to the microstructure, merged/overlapping rooftops and irregular shapes of buildings in slum-like areas. High spatial resolution is essential to facilitate extraction of individual buildings that are characterized by small, densely packed shanties and other structures. Informal settlement Kibera is composed of varying sizes of houses, where roofs can be a combination of many different materials, and mainly unpaved road and path network. Typically this can produce a spectral response on satellite imagery that is difficult to interpret and makes it difficult for traditional classification strategies to differentiate across object class type. Various approaches enable to extract data from imagery in urban environments. Simultaneously with expansion of VHR satellite systems an object-based image analysis (OBIA) was developed to answer new technological opportunities. OBIA approach works in similar way as human brain perceives nature/environment, namely (high detailed) image is segmented into homogeneous regions called segments or “image objects” (Benz et al., 2004), which are then classified into meaningful classes, following the specific context of the study. |
» | Kenya - Population and Housing Census 2009 |