Abstract |
Achieving the international 2 °C limit climate policy requires stringent reductions in GHG emissions by mid-century, with some countries simultaneously facing development-related challenges. South Africa is a middle-income developing country with high rates of unemployment and high levels of poverty, as well as an emissions-intensive economy. South Africa takes into account an assessment of what a fair contribution to reducing global emissions might be, and is committed to a ‘peak, plateau and decline' emissions trajectory with absolute emissions specified for 2025 and 2030, while noting the need to address development imperatives. This work utilizes an economy-wide computable general equilibrium model (e-SAGE) linked to an energy-system optimization model (TIMES) to explore improving development metrics within a 14 GtCO2e cumulative energy sector carbon constraint through to 2050 for South Africa. The electricity sector decarbonizes by retiring coal-fired power plants or replacing with concentrated solar power, solar photovoltaics and wind generation. Industry and tertiary-sector growth remains strong throughout the time period, with reduced energy intensity via fuel-switching and efficiency improvements. From 2010 to 2050, the model results in the unemployment rate decreasing from 25% to 12%, and the percentage of people living below the poverty line decreasing from 49% to 18%. Total energy GHG emissions were reduced by 39% and per capita emissions decreased by 62%. |