Simple Food Group Diversity as a Proxy Indicator for Iron and Vitamin A Status of Rural Primary School Children in Uganda

Type Journal Article - Food and Nutrition Sciences
Title Simple Food Group Diversity as a Proxy Indicator for Iron and Vitamin A Status of Rural Primary School Children in Uganda
Author(s)
Volume 4
Publication (Day/Month/Year) 2013
Page numbers 1271-1280
URL http://file.scirp.org/Html/40611.html
Abstract
Children in resource poor settings are at a high risk of inadequate iron and vitamin A intake when diets lack diversity and are dominated by staple foods. Yet comparative information on diet quality among school children is scarce. The objective of the study was to assess the potential of simple food group diversity to serve as a proxy indicator of iron and vitamin A status among rural school children in Uganda. A cross sectional correlation model of associations between Food Group Diversity (FGD) and iron and vitamin A status was used. We analyzed 8 schools in Kumi District, Uganda, randomly selected from the 34 schools that participated in the main part of the study. Our sample included primary school children, aged between 9 - 15 years (n = 172). Food group diversity and food variety (FV) were calculated from both a food frequency questionnaire (FFQ) and a 24-hour dietary recall. The FGD and FVS were tested against iron (as serum ferritin) and vitamin A (as serum retinol) status. The FGD (based on FFQ data) was 9.6 (±1.9). There was a posi-tive correlation between 24-hour recall and FFQ for consumption of cereals (Corr. Coef = 0.28; p < 0.05), which was also the most highly consumed group (98.9% & 86.9% by FFQ and 24-hour recall; respectively). Consistent with other studies, increase in the number of food groups significantly increased serum ferritin and serum retinol measures (p < 0.001). Presence of at least one food item in the “roots & tubers”; “cereals”; and “pulses/nuts”, significantly increased serum ferritin and serum retinol concentrations (p < 0.01). We speculate that simple food group diversity may reflect intake and serve as a simple indicator of iron and vitamin A status among school children. Strategies aimed at increas-ing dietary diversity in the community may benefit the families of these children and improve their micronutrient status.

Related studies

»